
What Else Can Fool Deep Learning?
Addressing Color Constancy Errors on Deep Neural Network Performance

Mahmoud Afifi1

1York University, Toronto
mafifi@eecs.yorku.ca

Michael S Brown1,2

2Samsung AI Center, Toronto
mbrown@eecs.yorku.ca

Abstract

There is active research targeting local image manip-
ulations that can fool deep neural networks (DNNs) into
producing incorrect results. This paper examines a type
of global image manipulation that can produce similar ad-
verse effects. Specifically, we explore how strong color casts
caused by incorrectly applied computational color con-
stancy – referred to as white balance (WB) in photography
– negatively impact the performance of DNNs targeting im-
age segmentation and classification. In addition, we discuss
how existing image augmentation methods used to improve
the robustness of DNNs are not well suited for modeling
WB errors. To address this problem, a novel augmentation
method is proposed that can emulate accurate color con-
stancy degradation. We also explore pre-processing train-
ing and testing images with a recent WB correction algo-
rithm to reduce the effects of incorrectly white-balanced im-
ages. We examine both augmentation and pre-processing
strategies on different datasets and demonstrate notable im-
provements on the CIFAR-10, CIFAR-100, and ADE20K
datasets.

1. Introduction

There is active interest in local image manipulations that
can be used to fool deep neural networks (DNNs) into pro-
ducing erroneous results. Such “adversarial attacks” often
result in drastic misclassifications. We examine a less ex-
plored problem of global image manipulations that can re-
sult in similar adverse effects on DNNs’ performance. In
particular, we are interested in the role of computational
color constancy, which makes up the white-balance (WB)
routine on digital cameras.

We focus on computational color constancy because it
represents a common source of global image errors found
in real images. When WB is applied incorrectly on a cam-
era, it results in an undesirable color cast in the captured im-
age. Images with such strong color casts are often discarded

class: Persian cat class: carton class: Walker Hound class: snorkel

Correct WB Incorrect WBCorrect WB Incorrect WBC
la

ss
ifi

ca
tio

n
 re

su
lts

Se
m

an
tic

 s
eg

m
en

ta
tio

n
re

su
lts

Correct WB Incorrect WB

Correct WB Incorrect WB
wall tree car plant grass road rock floor personshelfpainting

Figure 1. The effect of correct/incorrect computational color
constancy (i.e., white balance) on (top) classification results by
ResNet [29]; and (bottom) semantic segmentation by RefineNet
[39].

by users. As a result, online image databases and reposito-
ries are biased to contain mostly correctly white-balanced
images. This is an implicit assumption that is not acknowl-
edged for datasets composed of images crawled from the
web and online. However, in real-world applications, it is
unavoidable that images will, at some point, be captured
with the incorrect WB applied. Images with incorrect WB
can have unpredictable results on DNNs trained on white-
balanced biased training images, as demonstrated in Fig. 1.

Contribution We examine how errors related to compu-
tational color constancy can adversely affect DNNs focused
on image classification and semantic segmentation. In ad-
dition, we show that image augmentation strategies used to
expand the variation of training images are not well suited
to mimic the type of image degradation caused by color
constancy errors. To address these problems, we introduce
a novel augmentation method that can accurately emulate

realistic color constancy degradation. We also examine a
newly proposed WB correction method [2] to pre-process
testing and training images. Experiments on CIFAR-10,
CIFAR-100, and the ADE20K datasets using the proposed
augmentation and pre-processing correction demonstrate
notable improvements to test image inputs with color con-
stancy errors.

2. Related Work

Computational Color Constancy Cameras have on-
board image signal processors (ISPs) that convert the raw-
RGB sensor values to a standard RGB output image (de-
noted as an sRGB image) [33, 47]. Computational color
constancy, often referred to as WB in photography, is ap-
plied to mimic the human’s ability to perceive objects as
the same color under any type of illumination. WB is
used to identify the color temperature of the scene’s il-
lumination either manually or automatically by estimat-
ing the scene’s illumination from an input image (e.g.,
[1, 6, 7, 9, 17, 25, 30, 51]). After WB is applied to the
raw-RGB image, a number of additional nonlinear photo-
finishing color manipulations are further applied by the ISP
to render the final sRGB image [2]. These photo-finishing
operations include, but are not limited to, hue/saturation
manipulation, general color manipulation, and local/global
tone mapping [8, 27, 33, 44, 47]. Cameras generally have
multiple photo-finishing styles the user can select [2,33,34].

Post-WB Correction in sRGB Images When WB is ap-
plied incorrectly, it results in sRGB images with strong
color casts. Because of the nonlinear photo-finishing oper-
ations applied by the ISP after WB, correcting mistakes in
the sRGB image is non-trivial [2, 45]. Current solutions re-
quire meta-data, estimated from radiometric calibration or
raw-image reconstruction methods (e.g., [14, 34, 45]), that
contains the necessary information to undo the particular
nonlinear photo-finishing processes applied by the ISP. By
converting back to a raw-RGB space, the correct WB can
be applied using a diagonal correction matrix and then re-
rendered by the ISP. Unfortunately, meta-data to inverse the
camera pipeline and re-render the image is rarely available,
especially for sRGB images gleaned from the web—as is
the case with existing computer vision datasets. Recently,
it was shown that white balancing sRGB images can be
achieved by estimating a high-degree polynomial correction
matrix [2]. The work in [2], referred to WB for sRGB im-
ages (WB-sRGB), introduces a data-driven framework to
estimate such polynomial matrix for a given testing image.
We build on the WB-sRGB [2] by extending this framework
to emulate WB errors on the final sRGB images, instead of
correcting WB. We also used the WB-sRGB method [2] to
examine applying a pre-process WB correction on training

t = 4800K

t = 2850K t = 3800K

t = 5500K t = 7500K

t =2850K t = 3800K

t =5500K t = 7500K

RGB Jittering Swapping

HSV Jittering Dropping

(A) Rendered image with correct WB (B) Real rendering with different WB

(C) Traditional color augmentation (D) Our generated images

Figure 2. (A) An sRGB image from a camera with the correct WB
applied. (B) Images from the same camera with the incorrect WB
color temperatures (t) applied. (C) Images generated by process-
ing image (A) using existing augmentation methods—the images
clearly do not represent those in (B). (D) Images generated from
(A) using our proposed method detailed in Sec. 4.

and testing images in order to improve the performance of
DNN models against incorrectly white-balanced images.

Adversarial Attacks DNN models are susceptible to ad-
versarial attacks in the form of local image manipulation
(e.g., see [18, 26, 37, 54]). These images are created by
adding a carefully crafted imperceptible perturbation layer
to the original image [26, 54]. Such perturbation layers are
usually represented by local non-random adversarial noise
[3, 26, 41, 54, 58] or local spatial transformations [57]. Ad-
versarial examples are able to misguide pre-trained mod-
els to predict either a certain wrong response (i.e., tar-
geted attack) or any wrong response (i.e., untargeted at-
tack) [3, 12, 40]. While incorrect color constancy is not an
explicit attempt at an adversarial attack, the types of fail-
ures produced by this global modification act much like an
untargeted attack and can adversely affect DNNs’ perfor-
mance.

Data Augmentation To overcome limited training data
and to increase the visual variation, image augmentation
techniques are applied to training images. Existing im-
age augmentation techniques include: geometric transfor-
mations (e.g., rotation, translation, shearing) [19, 28, 28,
46], synthetic occlusions [60], pixel intensity processing
(e.g., equalization, contrast adjustment, brightness, noise)
[19, 56], and color processing (e.g., RGB color jittering
and PCA-based shifting, HSV jittering, color channel drop-
ping, color channel swapping) [15, 19, 23, 32, 36, 38, 42, 48,
49]. Traditional color augmentation techniques randomly
change the original colors of training images aiming for
better generalization and robustness of the trained model in

the inference phase. However, existing color augmentation
methods often generate unrealistic colors which rarely hap-
pen in reality (e.g., green skin or purple grass). More impor-
tantly, the visual appearance of existing color augmentation
techniques does not well represent the color casts produced
by incorrect WB applied onboard cameras, as shown in
Fig. 2. As demonstrated in [4, 13, 22], image formation has
an important effect on the accuracy of different computer
vision tasks. Recently, a simplified version of the camera
imaging pipeline was used for data augmentation [13]. This
augmentation method in [13], however, explicitly did not
consider the effects of incorrect WB due to the subsequent
nonlinear operations applied after WB. To address this is-
sue, we propose a camera-based augmentation technique
that can synthetically generates images with realistic WB
settings.

DNN Normalization Layers Normalization layers are
commonly used to improve the efficiency of the training
process. Such layers apply simple statistics-based shifting
and scaling operations to the activations of network layers.
The shift and scale factors can be computed either from the
entire mini-batch (i.e., batch normalization [31]) or from
each training instance (i.e., instance normalization [55]).
Recently, batch-instance normalization (BIN) [43] was in-
troduced to ameliorate problems related to styles/textures
in training images by balancing between batch and instance
normalizations based on the current task. Though the BIN
is designed to learn the trade-off between keeping or reduc-
ing original training style variations using simple statistics-
based operations, the work in [43] does not provide any
study regarding incorrect WB settings. The augmentation
and pre-processing methods proposed in our work directly
target training and testing images and do not require any
change to a DNNs architecture or training regime.

3. Effects of WB Errors on Pre-trained DNNs

We begin by studying the effect of incorrectly white-
balanced images on pre-trained DNN models for image
classification and semantic segmentation. As a motivation,
Fig. 3 shows two different WB settings applied to the same
image. Fig. 3 shows that the DNN’s attention for the same
scene is considerably altered by changing the WB setting.

For quantitative evaluations, we adopted several DNN
models trained for the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) 2012 [21] and the ADE20K
Scene Parsing Challenge 2016 [61]. Generating an entirely
new labeled testing set composed of images with incorrect
WB is an enormous task—ImageNet classification includes
1,000 classes and pixel-accurate semantic annotation re-
quires ∼60 minutes per image [50]. In lieu of a new testing
set, we applied our method which emulates WB errors to

(A) Color temperature: 2850K; ResNet-50 response: bee
In-camera WB Synthetic WB

(B) Color temperature: 7500K; ResNet-50 response: rapeseed
In-camera WB Synthetic WB

ReLU activation
(layer 44)

ReLU activation
(layer 44)Input image Input image

Figure 3. Image rendered with two different color temperatures
(denoted by t) using in-camera rendering and our method. (A)
Image class is bee. (B) Image class is rapeseed. Classification
results were obtained by ResNet-50 [29].

the validation images of each dataset. Our method will be
detailed shortly in Sec. 4.

Classification We apply our method to ImageNet’s vali-
dation set to generate images with five different color tem-
peratures and two different photo-finishing styles for a to-
tal of ten WB variations for each validation image; 899
grayscale images were excluded from this process. In to-
tal, we generated 491,010 images. We examined the fol-
lowing six well-known DNN models, trained on the orig-
inal ImageNet training images: AlexNet [36], VGG-16 &
VGG-19 [52], GoogLeNet [53], and ResNet-50 & ResNet-
101 [29]. Table 1 shows the accuracy drop for each model
when tested on our generated validation set (i.e., with differ-
ent WB and photo-finishing settings) compared to the orig-
inal validation set. In most cases, there is a drop of ∼10%
in accuracy. Fig. 4 shows an example of the impact of in-
correct WB.

Semantic Segmentation We used the ADE20K valida-
tion set for 2,000 images, and generated ten images with
different WB/photo-finishing settings for each image. At
the end, we generated a total of 20,000 new images. We
tested the following two DNN models trained on the orig-
inal ADE20K training set: DilatedNet [16, 59] and Re-
fineNet [39]. Table 2 shows the effect of improperly white-
balanced images on the intersection-over-union (IoU) and

(A) Original image (B) Three generated images with different WB settings

VGG: E cat
GoogLeNet: S cat
ResNet: E cat

VGG: candle
GoogLeNet: candle
ResNet: candle

VGG: candle
GoogLeNet: S cat
ResNet: E cat

VGG: candle
GoogLeNet: S cat
ResNet: E cat

t =2850K t =3800K t = 7500K

Figure 4. Pre-trained models are negatively impacted by incorrect
WB settings. (A) Original image. (B) Generated images with dif-
ferent WB color temperatures (denoted by t). Classification results
of: VGG-16 [52], GoogLeNet [53], and ResNet-50 [29] are writ-
ten on top of each image. The terms E and S stand for Egyptian
and Siamese, respectively.

Table 1. Adverse performance on ImageNet [21] due to the in-
clusion of incorrect WB versions of its validation images. The
models were trained on the original ImageNet training set. The re-
ported numbers denote the changes in the top-1 accuracy achieved
by each model.

Model Effect on top-1 accuracy
AlexNet [36] -0.112
VGG-16 [52] -0.104
VGG-19 [52] -0.102

GoogLeNet [53] -0.107
ResNet-50 [29] -0.111

ResNet-101 [29] -0.109

Table 2. Adverse performance on ADE20K [61] due to the inclu-
sion of incorrect WB versions of its validation images. The mod-
els were trained on ADE20K’s original training set. The reported
numbers denote the changes in intersection-over-union (IoU) and
pixel-wise accuracy (pxl-acc) achieved by each model on the orig-
inal validation.

Model Effect on IoU Effect on pxl-acc
DilatedNet [16, 59] -0.023 -0.024

RefineNet [39] -0.031 -0.026

pixel-wise accuracy (pxl-acc) obtained by the same models
on the original validation set. While DNNs for segmenta-
tion fare better than the results for classification, we still
incur a drop of over 2% in performance.

4. Proposed Method to Emulate WB Errors
Given an sRGB image, denoted as Itcorr , that is assumed

to be white-balanced with the correct color temperature, our
goal is to modify Itcorr ’s colors to mimic its appearance as
if it were rendered by a camera with different (incorrect)
color temperatures, t, under different photo-finishing styles.
Since we do not have access to Itcorr ’s original raw-RGB im-
age, we cannot re-render the image from raw-RGB to sRGB
using a standard camera pipeline. Instead, we have adopted
a data-driven method that mimics this manipulation directly
in the sRGB color space. Our framework draws heavily
from the WB-sRGB data-driven framework [2], which was
proposed to correct improperly white-balanced sRGB im-
ages. Our framework, however, “emulates” WB errors on
the rendered sRGB images. Fig. 5 provides an overview of
our method.

4.1. Dataset

Our method relies on a large dataset of sRGB images
generated by [2]. This dataset contains images rendered
with different WB settings and photo-finishing styles. There
is a ground truth sRGB image (i.e., rendered with the
“correct” color temperature) associated with each training
image. The training sRGB images were rendered using
five different color temperatures: 2850 Kelvin (K), 3800K,
5500K, 6500K, and 7500K. In addition, each image was
rendered using different camera photo-finishing styles. In
our WB emulation framework, we used 17,970 images from

this dataset (1,797 correct sRGB images each with ten cor-
responding images rendered with five different color tem-
peratures and two different photo-finishing styles, Camera
Standard and Adobe Standard).

4.2. Color Mapping

Next, we compute a mapping between the correct white-
balanced sRGB image to each of its ten corresponding im-
ages. We follow the same procedure of the WB-sRGB
method [2] and use a kernel function, ϕ, to project RGB
colors into a high-dimensional space. Then, we perform
polynomial data fitting on these projected values. Specifi-
cally, we used ϕ:[R, G, B]T → [R, G, B, RG, RB, GB, R2,
G2, B2]T [24]. The data fitting can be represented by a color
transformation matrix Mtcorr→t computed by the following
minimization equation:

argmin
Mtcorr→t

‖Mtcorr→t ϕ (Itcorr)− It‖F , (1)

where Itcorr and It are 3×n color matrices of the white-
balanced image rendered with the correct color temperature
tcorr and color values of the same image rendered with the
target different color temperature t, respectively, n is the
total number of pixels in each image, ‖.‖F is the Frobenius
norm, and Mtcorr→t is represented as a nonlinear 3×9 full
matrix.

We compute a color transformation matrix between each
pair of correctly white-balanced image and its correspond-
ing target image rendered with a specific color temperature
and photo-finishing. In the end, we have ten matrices asso-
ciated with each image in our training data.

4.3. Color Feature

As shown in Fig. 5, when augmenting an input sRGB
image to have different WB settings, we search our dataset
for similar sRGB images to the input image. This search
is not based on scene content, but on the color distribu-
tion of the image. As a result, we represent each image in
the training set with the RGB-uv projected color histogram
feature used in [2]. Each histogram feature is represented
as an m×m×3 tensor. To further reduce the size of the
histogram feature, we apply principal component analysis
(PCA) to the three-layer histogram feature. This transfor-
mation maps the zero-centered vectorized histogram to a
new lower-dimensional space. Our implementation used a
55-dimensional PCA vector. Our final training data there-
fore consists of the compacted feature vector of each train-
ing white-balanced image, the associated color transforma-
tion matrices, and the PCA coefficient matrix and bias vec-
tor.

4.4. KNN Retrieval

Given a new input image Iin, we extract its compacted
color feature v, and then search for training examples with

Input sRGB image

Histogram feature
Compacted

feature
KNN

retrieval
Generate color transformation matrices

from similar training examples
Apply color transformation
matrices to the input image

Sy
nt

he
tic

 W
B

re
nd

er
in

g

…

t = 5500K

t = 2850K t = 3800K

t = 7500K

…

Compacted
features

…

…

… …

Images with different WB/photo-finishing Images with
correct WB Training

histogram
features

&

…

(A) Training data

AS

CS

(B) WB emulation

(C) Our generated images

Training image

A set of color
transformation matrices
is associated with each

compacted featureAS

CS
t = 2850K

t = 2850K

t = 7500K

t = 7500K

…
t = 3800K

t = 3800K

… …
Figure 5. Our WB emulation framework. (A) A dataset of 1,797 correctly white-balanced sRGB images [2]; each image has ten corre-
sponding sRGB images rendered with five different color temperatures and two photo-finishing styles, Camera Standard (CS) and Adobe
Standard (AS). For each white-balanced image, we generate its compact histogram feature and ten color transformation matrices to the
corresponding ten images. (B) Our WB emulation pipeline (detailed in Sec. 4). (C) The augmented images for the input image that
represent different color temperatures (denoted by t) and photo-finishing styles.

color distributions similar to the input image’s color distri-
bution. The L2 distance is adopted as a similarity metric
between v and the training compacted color features. Af-
terwards, we retrieve the color transformation matrices as-
sociated with the nearest k training images. The retrieved
set of matrices is represented by Ms = {M(j)

s }j=k
j=1 , where

M
(j)
s represents the color transformation matrix that maps

the jth white-balanced training image colors to their corre-
sponding image colors rendered with color temperature t.

4.5. Transformation Matrix

After computing the distance vector d between v and the
nearest training features, we compute a weighting vector α
as follows [2]:

αj =
exp

(
−d2

j/2σ
2
)

∑k
k′=1 exp

(
−d2

k′/2σ2
) , j ∈ [1, ..., k], (2)

where σ is the radial basis function parameter. We used
σ = 0.25 in our experiments. We construct the final color
transformation matrix M̂tcorr→t as a linear weighted com-
bination of the retrieved color transformation matrices Ms.
This process is performed as follows [2]:

M̂tcorr→t =

k∑
j=1

αjM
(j)
s . (3)

Lastly, the “re-rendered” image Ît with color temperature t
is computed as:

Ît = M̂tcorr→t ϕ (Iin) . (4)

5. Experiments
Robustness Strategies Our goal is to improve the per-
formance of DNN methods in the face of test images that

may have strong global color casts due to computational
color constancy errors. Based on the WB-sRGB frame-
work [2] and the modified framework discussed in Sec. 4,
we examine three strategies to improve the robustness of
the DNN models.

(1) The first strategy is to apply a WB correction to
each testing image in order to remove any unexpected color
casts during the inference time. Note that this approach im-
plicitly assumes that the training images are correctly WB.
In our experiments, we used the WB-sRGB method [2]
to correct the test images, because it currently achieves
the state-of-the-art on white balancing sRGB rendered
images. We examined adapting the simple diagonal-based
correction – which is applied by traditional WB methods
that are intended to be applied on raw-RGB images (e.g.,
gray-world [10]) – but found that they give inadequate re-
sults when applied on sRGB images, as also demonstrated
in [2]. In fact, applying diagonal-based correction directly
on the training image is similar to multiplicative color
jittering. This is why we need to use a nonlinear color
manipulation (e.g., polynomial correction estimated by [2])
for more accurate WB correction for sRGB images. An
example of the difference is shown in Fig. 6.

It is worth mentioning that the training data used by
the WB-sRGB method has five fixed color temperatures
(2850K, 3800K, 5500K, 6500K, 7500K), all with color
correction matrices mapping to their corresponding correct
WB. In most cases, one of these five fixed color temper-
atures will be visually similar to the correct WB. Thus,
if the WB-sRGB method is applied to an input image
that is already correctly white-balanced, the computed
transformation will act as an identity.

(2) The second strategy considers the case that some
of the training images may include some incorrectly

white-balanced images. We, therefore, also apply the WB
correction step to all the training images as well as testing
images. This again uses the WB-sRGB method [2] on both
testing and training images.

(3) The final strategy is to augment the training dataset
based on our method described in Sec. 4. Like other aug-
mentation approaches, there is no pre-processing correction
required. The assumption behind this augmentation process
is that the robustness of DNN models can be improved by
training on augmented images that serve as exemplars for
color constancy errors.

Testing Data Categories Testing images are grouped
into two categories. In Category 1 (Cat-1), we expand the
original testing images in the CIFAR-10, CIFAR-100, and
ADE20K datasets by applying our method to emulate cam-
era WB errors (described in Sec. 4). Each test image now
has ten (10) variations that share the same ground truth la-
bels. We acknowledge this is less than optimal, given that
the same method to modify the testing image is used to
augment the training images. However, we are confident
in the proposed method’s ability to emulate WB errors that
we feel Cat-1 images represents real-world examples. With
that said, we do not apply strategies 1 and 2 to Cat-1, as the
WB-sRGB method is based on a similar framework used
to generate the testing images. For the sake of complete-
ness, we also include Category 2 (Cat-2), which consists
of new datasets generated directly from raw-RGB images.
Specifically, raw-RGB images are rendered using the full
in-camera pipeline to sRGB images with in-camera color
constancy errors. As a result, Cat-2’s testing images ex-
hibit accurate color constancy errors but contain fewer test-
ing images for which we have provided the ground truth
labels.

(A
) O

rig
in

al

im
ag

es
(B

) G
W

co

rre
ct

io
n

(C
) W

B-
sR

G
B

co
rre

ct
io

n

killer whaleplatypus

grey whalepuffer

Groenendael dogGerman shepherd

sleeping bag

snorkel

Chihuahua dog

Figure 6. (A) Images with different categories of “dogs” rendered
with incorrect WB settings. (B) Corrected images using gray-
world (GW) [10]. (C) Corrected images using the WB-sRGB
method [2]. Predicted class by AlexNet is written on top of each
image. Images in (A) and (B) are misclassified.

5.1. Experimental Setup

We compare the three above strategies with two exist-
ing and widely adopted color augmentation processes: RGB
color jittering and HSV jittering.

Our Method The nearest neighbor searching was applied
using k = 25. The proposed WB augmentation model
runs in 7.3 sec (CPU) and 1.0 sec (GPU) to generate ten
12-mega-pixel images. The reported runtime was com-
puted using Intelr Xeonr E5-1607 @ 3.10 GHz CPU and
NVIDIA™ Titan X GPU.

Existing Color Augmentation To the best of our knowl-
edge, there is no standardized approach for existing color
augmentation methods. Accordingly, we tested different
settings and selected the settings that produce the best re-
sults.

For RGB color jittering, we generated ten images with
new colors by applying a random shift x ∼ N (µx, σ

2) to
each color channel of the image. For HSV jittering, we
generated ten images with new colors by applying a ran-
dom shift x to the hue channel and multiplying each of the
saturation and value channels by a random scaling factor
s ∼ N (µs, σ

2). We found that µx = −0.3, µs = 0.7, and
σ = 0.6 give us the best compromise between having color
diversity with low color artifacts during the augmentation
process.

5.2. Network Training

For image classification, training new models on Ima-
geNet dataset requires unaffordable efforts—for instance,
ILSVRC 2012 consists of ∼1 million images and would be
∼10 million images after applying any of the color augmen-
tation techniques. For that reason, we perform experiments
on CIFAR-10 and CIFAR-100 datasets [35] due to a more
manageable number of images in each dataset.

We trained SmallNet [46] from scratch on CIFAR-10.
We also fine-tuned AlexNet [36] to recognize the new
classes in CIFAR-10 and CIFAR-100 datasets. For seman-
tic segmentation, we fine-tuned SegNet [5] on the training
set of the ADE20K dataset [61].

We train each model on: (i) the original training images,
(ii) the WB-sRGB method [2] applied to the original train-
ing images, and (iii) original training images with the ad-
ditional images produced by color augmentation methods.
For color augmentation, we examined RGB color jittering,
HSV jittering, and our WB augmentation. Thus, we trained
five models for each CNN architecture, each of which was
trained on one of the mentioned training settings.

For fair comparisons, we trained each model for the
same number of iterations. Specifically, the training was for
∼29,000 and ∼550,000 iterations for image classification

and semantic segmentation tasks, respectively. We adjusted
the number of epochs to make sure that each model was
trained on the same number of mini-batches for fair compar-
ison between training on augmented and original sets. Note
that by using a fixed number of iterations to train models
with both original training data and augmented data, we did
not fully exploit the full potential of the additional train-
ing images when we trained models using additional aug-
mented data.

The training was performed using NVIDIA™ Titan X
GPU. The details of training parameters are given in sup-
plemental materials.

5.3. Results on Cat-1

Cat-1 tests each model using test images that have been
generated by our method described in Sec. 4.

Classification We used the CIFAR-10 testing set (10,000
images) to test SmallNet and AlexNet models trained on the
training set of the same dataset. We also used the CIFAR-
100 testing set (10,000 images) to evaluate the AlexNet
model trained on CIFAR-100. After applying our WB em-
ulation to the testing sets, we have 100,000 images for each
testing set of CIFAR-10 and CIFAR-100. The top-1 accura-
cies obtained by each trained model are shown in Table 3.
The best results on our expanded testing images, which in-
clude strong color casts, were obtained using models trained
on our proposed WB augmented data.

Interestingly, the experiments show that applying WB
correction [2] on the training data, in most cases, improves
the accuracy using both the original and expanded test sets.
DNNs that were trained on WB augmented training images
achieve the best improvement on the original testing images
compared to using other color augmenters.

Semantic Segmentation We used the ADE20K valida-
tion set using the same setup explained in Sec. 3. Table
4 shows the obtained pxl-acc and IoU of the trained SegNet
models. The best results were obtained with our WB aug-
mentation; Fig. 7 shows qualitative examples. Additional
examples are also given in supplemental materials.

5.4. Results on Cat-2

Cat-2 data requires us to generate and label our own
testing image dataset using raw-RGB images. To this end,
we collected 518 raw-RGB images containing CIFAR-10
object classes from the following datasets: HDR+ Burst
Photography dataset [27], MIT-Adobe FiveK dataset [11],
and Raise dataset [20]. We rendered all raw-RGB images
with different color temperatures and two photo-finishing
styles using the Adobe Camera Raw module. Adobe
Camera Raw accurately emulates the ISP onboard a camera

Table 3. [Cat-1] Results of SmallNet [46] and AlexNet [36] on
CIFAR dataset [35]. The shown accuracies obtained by models
trained on: original training, “white-balanced”, and color aug-
mented sets. The testing was performed using: original testing
set and testing set with different synthetic WB settings (denoted
as diff. WB). The results of the baseline models (i.e., trained on
the original training set) are highlighted in green, while the best
result for each testing set is shown bold. We highlight best results
obtained by color augmentation techniques in yellow. Effects on
baseline model results are shown in parentheses.

Cat-1 SmallNet [46] on CIFAR-10 [35]
Training set Original Diff. WB

Original training set 0.799 0.655
“White-balanced” set 0.801 (+0.002) 0.683 (+0.028)
HSV augmented set 0.801 (+0.002) 0.747 (+0.092)
RGB augmented set 0.780 (-0.019) 0.765 (+0.11)

WB augmented set (ours) 0.809 (+0.010) 0.786 (+0.131)
Cat-1 AlexNet [36] on CIFAR-10 [35]

Original training set 0.933 0.797
“White-balanced” set 0.932 (-0.001) 0.811 (+0.014)
HSV augmented set 0.923 (-0.010) 0.864 (+0.067)
RGB augmented set 0.922 (-0.011) 0.872 (+0.075)

WB augmented set (ours) 0.926 (-0.007) 0.889 (+0.092)
Cat-1 AlexNet [36] on CIFAR-100 [35]

Original training set 0.768 0.526
“White-balanced” set 0.757 (-0.011) 0.543 (+0.017)
HSV augmented set 0.722 (-0.044) 0.613 (+0.087)
RGB augmented set 0.723 (-0.045) 0.645 (+0.119)

WB augmented set (ours) 0.735 (-0.033) 0.670 (+0.144)

Table 4. [Cat-1] Results of SegNet [5] on the ADE20K validation
set [61]. The shown intersection-over-union (IoU) and pixel-wise
accuracy (pxl-acc) were achieved by models trained using: orig-
inal training, “white-balanced”, and color augmented sets. The
testing was performed using: original testing set and testing set
with different synthetic WB settings (denoted as diff. WB). Ef-
fects on results of SegNet trained on the original training set are
shown in parentheses. Highlight marks are as described in Table
3.

IoU
Cat-1 Original Diff. WB

Original training set 0.208 0.180
“White-balanced” set 0.210 (+0.002) 0.197 (+0.017)
HSV augmented set 0.192 (-0.016) 0.185 (+0.005)
RGB augmented set 0.195 (-0.013) 0.190 (+0.010)

WB augmented set (ours) 0.202 (-0.006) 0.199 (+0.019)
Cat-1 pxl-acc

Original training set 0.603 0.557
“White-balanced” set 0.605 (+0.002) 0.579 (+0.022)
HSV augmented set 0.583 (-0.020) 0.536 (-0.021)
RGB augmented set 0.544 (-0.059) 0.534 (-0.023)

WB augmented set (ours) 0.597 (-0.006) 0.581 (+0.024)

and produces results virtually identical to what the in-
camera processing would produce [2]. Images that contain
multiple objects were manually cropped to include only
the interesting objects—namely, the CIFAR-10 classes. At
the end, we generated 15,098 rendered testing images that
reflect real in-camera WB settings. We used the following
testing sets in our experiments:

(i) In-camera auto WB contains images rendered
with the auto WB (AWB) correction setting in Adobe Cam-
era Raw, which mimics the camera’s AWB functionality.

others wall

tower

building sky
tree grass

earthwater

housefence
sand pole

grandstand van

road bridge
boat truck

floor

plant

sidewalk

mountain

sea

ceiling

stairway stairs

bench

(H) Color
codes

(G) Results w/ WB
augmentation

(F) Results w/o
color augmentation

(E) Images with
different WB settings

(D) Results w/ WB
augmentation

(C) Results w/o
color augmentation

(B) Ground truth
semantic masks

(A) Original
validation images

pxl-acc = 0.8261 pxl-acc = 0.8631 pxl-acc = 0.6900 pxl-acc = 0.8568

pxl-acc = 0.4910 pxl-acc = 0.8734 pxl-acc = 0.4119 pxl-acc = 0.8469

Figure 7. Results of SegNet [5] on the ADE20K validation set [61]. (A) Original validation image. (B) Ground truth semantic mask. (C) &
(D) Results of trained model wo/w color augmentation using image in (A), respectively. (E) Image with a different WB. (F) & (G) Results
w/o and with color augmentation using image in (E), respectively. (H) Color codes. The term ‘pxl-acc’ refers to pixel-wise accuracy.

Table 5. [Cat-2] Results of SmallNet [46] and AlexNet [36]. The
shown accuracies were obtained using trained models on the orig-
inal training, “white-balanced”, and color augmented sets. Effects
on results of models trained on the original training set are shown
in parentheses. Highlight marks are as described in Table 3.

Cat-2 SmallNet
Training Set In-cam AWB In-cam Diff. WB WB pre-processing

Original training set 0.467 0.404 0.461
“White-balanced” set 0.496 (+0.029) 0.471 (+0.067) 0.492 (+0.031)
HSV augmented set 0.477 (+0.001) 0.462 (+0.058) 0.481 (+0.02)
RGB augmented set 0.474 (+0.007) 0.475 (+0.071) 0.470 (+0.009)

WB augmented set (ours) 0.494 (+0.027) 0.496 (+0.092) 0.484 (+0.023)
Cat-2 AlexNet

Original training set 0.792 0.734 0.772
“White-balanced” set 0.784 (-0.008) 0.757 (+0.023) 0.784 (+0.012)
HSV augmented set 0.790 (+0.002) 0.771 (+0.037) 0.779 (+0.007)
RGB augmented set 0.791 (-0.001) 0.779 (+0.045) 0.783 (+0.011)

WB augmented set (ours) 0.799 (+0.007) 0.788 (+0.054) 0.787 (+0.015)

AWB does fail from time to time; we manually removed
images that had a noticeable color cast. This set of images
is intended to be equivalent to testing images on existing
image classification datasets.

(ii) In-camera WB settings contains images rendered
with the different color temperatures and photo-finishing
styles. This set represents testing images that contain WB
color cast errors.

(iii) WB pre-processing correction applied to set
(ii) contains images of set (ii) after applying the WB-sRGB
correction [2]. This set is used to study the potential
improvement of applying a pre-processing WB correction
in the inference phase.

Table 5 shows the top-1 accuracies obtained by Small-
Net and AlexNet on the external testing sets. The exper-
iments show the accuracy is reduced by ∼6% when the
testing set is images that have been modified with incor-
rect WB settings compared with their original accuracies
obtained with “properly” white-balanced images using the
in-camera AWB. We also notice that the best accuracies
are obtained by applying either a pre-processing WB on
both training/testing images or our WB augmentation in an
end-to-end manner. Examples of misclassified images are
shown in Fig. 8. Additional examples are also given in sup-

(A) In-camera auto WB
class: cat

class: bird class: automobile

class: bird class: dog class: ship class: airplane

class: ship class: airplane

(B) Different in-camera WB settings

class: cat class: dog class: dog

Figure 8. (A) Correctly classified images rendered with in-camera
auto WB. (B) Misclassified images rendered with in-camera dif-
ferent WB. Note that all images in (B) are correctly classified by
the same model (AlexNet [36]) trained on WB augmented data.

plemental materials.

6. Conclusion

This work has examined the impact on computational
color constancy errors on DNNs for image classification
and semantic segmentation. A new method to perform
augmentation that accurately mimics WB errors was intro-
duced. We show that both pre-processing WB correction
and training DNNs with our augmented WB images im-
prove the results for DNNs targeting CIFAR-10, CIFAR-
100, and ADE20K datasets. We believe our WB augmenta-
tion method will be useful for other tasks targeted by DNN
where image augmentation is sought.

Acknowledgments This study was funded in part by the
Canada First Research Excellence Fund for the Vision: Science
to Applications (VISTA) programme and an NSERC Discovery
Grant. Dr. Brown contributed to this article in his personal ca-
pacity as a professor at York University. The views expressed are
his own and do not necessarily represent the views of Samsung
Research.

References
[1] Mahmoud Afifi and Michael S Brown. Sensor-independent

illumination estimation for DNN models. In BMVC, 2019. 2
[2] Mahmoud Afifi, Brian Price, Scott Cohen, and Michael S

Brown. When color constancy goes wrong: Correcting im-
properly white-balanced images. In CVPR, 2019. 2, 4, 5, 6,
7, 8

[3] Naveed Akhtar and Ajmal Mian. Threat of adversarial at-
tacks on deep learning in computer vision: A survey. IEEE
Access, 6:14410–14430, 2018. 2

[4] Alexander Andreopoulos and John K Tsotsos. On sensor
bias in experimental methods for comparing interest-point,
saliency, and recognition algorithms. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34(1):110–126,
2012. 3

[5] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
Segnet: A deep convolutional encoder-decoder architecture
for image segmentation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 39(12):2481–2495, 2017. 6,
7, 8

[6] Jonathan T Barron. Convolutional color constancy. In ICCV,
2015. 2

[7] Jonathan T Barron and Yun-Ta Tsai. Fast fourier color con-
stancy. In CVPR, 2017. 2

[8] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen,
Dillon Sharlet, and Jonathan T Barron. Unprocessing images
for learned raw denoising. arXiv preprint arXiv:1811.11127,
2018. 2

[9] Gershon Buchsbaum. A spatial processor model for ob-
ject colour perception. Journal of the Franklin Institute,
310(1):1–26, 1980. 2

[10] Gershon Buchsbaum. A spatial processor model for ob-
ject colour perception. Journal of the Franklin Institute,
310(1):1–26, 1980. 5, 6

[11] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo
Durand. Learning photographic global tonal adjustment with
a database of input/output image pairs. In CVPR, 2011. 7

[12] N. Carlini and D. Wagner. Towards evaluating the robustness
of neural networks. In IEEE Symposium on Security and
Privacy (SP), 2017. 2

[13] Alexandra Carlson, Katherine A Skinner, and Matthew
Johnson-Roberson. Modeling camera effects to improve
deep vision for real and synthetic data. In ECCV, 2018. 3

[14] A. Chakrabarti, Ying Xiong, Baochen Sun, T. Darrell, D.
Scharstein, T. Zickler, and K. Saenko. Modeling radiometric
uncertainty for vision with tone-mapped color images. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
36(11):2185–2198, 2014. 2

[15] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and An-
drew Zisserman. Return of the devil in the details: Delving
deep into convolutional nets. In BMVC, 2014. 2

[16] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(4):834–848, 2018. 3,
4

[17] Dongliang Cheng, Brian Price, Scott Cohen, and Michael S
Brown. Effective learning-based illuminant estimation using
simple features. In CVPR, 2015. 2

[18] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann
Dauphin, and Nicolas Usunier. Parseval networks: Improv-
ing robustness to adversarial examples. In ICML, 2017. 2

[19] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:1805.09501, 2018.
2

[20] Duc-Tien Dang-Nguyen, Cecilia Pasquini, Valentina Conot-
ter, and Giulia Boato. Raise: A raw images dataset for digital
image forensics. In ACM Multimedia Systems Conference,
2015. 7

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 3, 4

[22] Steven Diamond, Vincent Sitzmann, Stephen Boyd, Gordon
Wetzstein, and Felix Heide. Dirty pixels: Optimizing im-
age classification architectures for raw sensor data. arXiv
preprint arXiv:1701.06487, 2017. 3

[23] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-
vised visual representation learning by context prediction. In
ICCV, 2015. 2

[24] Graham D Finlayson, Michal Mackiewicz, and Anya Hurl-
bert. Color correction using root-polynomial regression.
IEEE Transactions on Image Processing, 24(5):1460–1470,
2015. 4

[25] Graham D Finlayson and Elisabetta Trezzi. Shades of gray
and colour constancy. In Color and Imaging Conference,
2004. 2

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 2

[27] Samuel W Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew
Adams, Jonathan T Barron, Florian Kainz, Jiawen Chen, and
Marc Levoy. Burst photography for high dynamic range and
low-light imaging on mobile cameras. ACM Transactions on
Graphics, 35(6):192, 2016. 2, 7

[28] Søren Hauberg, Oren Freifeld, Anders Boesen Lindbo
Larsen, John Fisher, and Lars Hansen. Dreaming more
data: Class-dependent distributions over diffeomorphisms
for learned data augmentation. In Artificial Intelligence and
Statistics, 2016. 2

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1, 3, 4

[30] Yuanming Hu, Baoyuan Wang, and Stephen Lin. Fc4: fully
convolutional color constancy with confidence-weighted
pooling. In CVPR, 2017. 2

[31] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 3

[32] Nima Khademi Kalantari and Ravi Ramamoorthi. Deep high
dynamic range imaging of dynamic scenes. ACM Transac-
tions on Graphics, 36(4):144–1, 2017. 2

[33] Hakki Can Karaimer and Michael S Brown. A software
platform for manipulating the camera imaging pipeline. In
ECCV, 2016. 2

[34] Seon Joo Kim, Hai Ting Lin, Zheng Lu, Sabine Süsstrunk,
Stephen Lin, and Michael S Brown. A new in-camera imag-
ing model for color computer vision and its application.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 34(12):2289–2302, 2012. 2

[35] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, 2009.
6, 7

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 2012. 2, 3, 4, 6, 7, 8

[37] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. Technical report,
Google, Inc., 2016. 2

[38] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-
Hsuan Yang. Unsupervised representation learning by sort-
ing sequences. In ICCV, 2017. 2

[39] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian
Reid. Refinenet: Multi-path refinement networks for high-
resolution semantic segmentation. In CVPR, 2017. 1, 3, 4

[40] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.
Delving into transferable adversarial examples and black-
box attacks. In ICLR, 2017. 2

[41] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard. Deepfool: a simple and accurate method
to fool deep neural networks. In CVPR, 2016. 2

[42] Yair Movshovitz-Attias, Takeo Kanade, and Yaser Sheikh.
How useful is photo-realistic rendering for visual learning?
In ECCV, 2016. 2

[43] Hyeonseob Nam and Hyo-Eun Kim. Batch-instance nor-
malization for adaptively style-invariant neural networks. In
NIPS, 2018. 3

[44] Seonghyeon Nam and Seon Joo Kim. Modelling the scene
dependent imaging in cameras with a deep neural network.
In ICCV, 2017. 2

[45] Rang MH Nguyen and Michael S Brown. Raw image re-
construction using a self-contained sRGB–JPEG image with
small memory overhead. International Journal of Computer
Vision, 126(6):637–650, 2018. 2

[46] Luis Perez and Jason Wang. The effectiveness of data aug-
mentation in image classification using deep learning. arXiv
preprint arXiv:1712.04621, 2017. 2, 6, 7, 8

[47] Rajeev Ramanath, Wesley E Snyder, Youngjun Yoo, and
Mark S Drew. Color image processing pipeline. IEEE Signal
Processing Magazine, 22(1):34–43, 2005. 2

[48] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In CVPR, 2016. 2

[49] Alexander Jung Revision. Imgaug library. Online; accessed
30 January 2019. 2

[50] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In ECCV. 3

[51] Wu Shi, Chen Change Loy, and Xiaoou Tang. Deep spe-
cialized network for illuminant estimation. In ECCV, 2016.
2

[52] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 3, 4

[53] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015. 3, 4

[54] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In ICLR, 2014. 2

[55] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Im-
proved texture networks: Maximizing quality and diversity
in feed-forward stylization and texture synthesis. In CVPR,
2017. 3

[56] VSR Veeravasarapu, Constantin Rothkopf, and Ramesh Vis-
vanathan. Adversarially tuned scene generation. In CVPR,
2017. 2

[57] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan
Liu, and Dawn Song. Spatially transformed adversarial ex-
amples. arXiv preprint arXiv:1801.02612, 2018. 2

[58] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou,
Lingxi Xie, and Alan Yuille. Adversarial examples for se-
mantic segmentation and object detection. In ICCV, 2017.
2

[59] Fisher Yu and Vladlen Koltun. Multi-scale context aggrega-
tion by dilated convolutions. In ICLR, 2015. 3, 4

[60] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. arXiv preprint
arXiv:1708.04896, 2017. 2

[61] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ADE20K dataset. In CVPR, 2017. 3, 4, 6, 7, 8

