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Abstract

Camera images saved in raw format are being adopted
in computer vision tasks since raw values represent min-
imally processed sensor responses. Camera manufactur-
ers, however, have yet to adopt a standard for raw images
and current raw-rgb values are device specific due to dif-
ferent sensors spectral sensitivities. This results in signif-
icantly different raw images for the same scene captured
with different cameras. This paper focuses on estimating
a mapping that can convert a raw image of an arbitrary
scene and illumination from one camera’s raw space to an-
other. To this end, we examine various mapping strate-
gies including linear and non-linear transformations ap-
plied both in a global and illumination-specific manner.
We show that illumination-specific mappings give the best
result, however, at the expense of requiring a large num-
ber of transformations. To address this issue, we intro-
duce an illumination-independent mapping approach that
uses white-balancing to assist in reducing the number of
required transformations. We show that this approach
achieves state-of-the-art results on a range of consumer
cameras and images of arbitrary scenes and illuminations.

1. Introduction

Camera manufactures apply photo-finishing operations
(e.g. tone-mapping, white-balancing, etc.) before saving
images in the standard rgb format (i.e. JPEG). For many
computer vision tasks, such in-camera processing must be
undone to map sRGB values back to physically meaningful
values (e.g. see [5, 8, 9, 15, 21]). Most consumer cameras
now allow images to be saved in raw format that represents
a minimally processed image obtained from the camera’s
sensor. This format is desirable for computer vision tasks as
the raw-rgb values are known to be linearly related to scene
radiance [5, 15], thereby avoiding the need to undo photo-
finishing. One drawback, however, is that manufacturers
have yet to agree on a standard raw format. As a result,
the raw-rgb values are device specific and raw images of
the same scene and illumination from different cameras can
differ significantly (see Fig. 1).

Canon 1D Sony 𝛼57 

Canon 1D – Nikon D40 Canon 1D - Sony 𝛼57 Nikon D40 - Sony 𝛼57  

Nikon D40 

Figure 1. Top row shows three raw images taken from Canon 1D,
Nikon D40, and Sony α57. Bottom row shows the numerical dif-
ference between the raw images.

The goal of this paper is to find a mapping between
different cameras’ raw-rgb colorspaces. This is useful for a
variety of reasons from comparing scene objects between
different cameras to mosaicing raw images from multiple
cameras. This problem is inherently challenging since the
raw-rgb values represent a projection of scene radiance
onto only three color channels, where the projection differs
due to the unique spectral responses of sensors found in
different camera makes and models.

Contribution The contribution of our work is to conduct an
analysis of a range of strategies to perform the raw-to-raw
mapping between cameras. In particular, linear transforma-
tions, radial basis functions, gaussian process regression,
and polynomial fitting are evaluated in a global mapping
manner (all illuminations combined) and an illumination-
specific manner. From this analysis, a new calibration and
mapping method is proposed that uses two linear transfor-
mations together with a white-balancing step to provide a
compact solution that offers state-of-the-art results. The
effectiveness of this approach is demonstrated on a wide
range of cameras and images. In addition, a data set for
studying the raw-to-raw mapping problem has been assem-
bled with over 250 raw images from eight different cameras
of color charts and various scenes under different illumina-
tions for calibration and testing.
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2. Related work and preliminaries
There is not a great deal of prior works addressing the

mapping between raw colorspaces. Most work focuses on
the related problem of making cameras colorimetric by find-
ing a mapping between a camera’s raw-rgb values and a
color chart with known CIE XYZ values. This is mainly
done by a simple 3 × 3 linear transform (e.g. [17]). Work
by Hong et al. [13] examined the use of a polynomial func-
tion but for a single illumination only. Other related works
attempt to recover the full spectral response of the cam-
eras (e.g. [14, 20, 18]) through often complex procedures
that may not be practical for mainstream use. Moreover,
knowing the spectral responses does not directly reveal the
best approach to use to map between different cameras.

Adobe has arguably been the most serious in addressing
this issue. Adobe proposed a standard raw space termed
Digital Negative (DNG) in 2004, however, few manufac-
turers have adopted it. Adobe provides an SDK 1 that can
convert a wide range of camera models into Adobe’s DNG
format. Adobe has also provided a report describing the
conversion [1], which is explained in more detail in Sec. 5.

Given the lack of prior work, we begin our preliminar-
ies by discussing the problem of color constancy/white-
balancing given its relevance to the raw-to-raw mapping
problem and its use in our proposed method described in
Sec. 4.
Preliminaries We start with the image formation model in
the spectral domain, where an rgb image I can be written
as:

I(x) =

∫
ω

Rc(λ)S(x, λ)L(λ)dλ, (1)

where λ represents the wavelength, ω is the visible spec-
trum 380 − 720nm, Rc is the camera’s spectral response,
and c is the color channel c = r, g, b. The term S(x, λ) rep-
resents the scene’s spectral response at pixel x and L(λ) is
the lighting in the scene, assumed to be spatially uniform.

The color constancy problem can be expressed as fol-
lows (dropping the spatial location x for simplicity):

IL1 =
∫
ω
Rc(λ)S(λ)L1(λ)dλ

IL2 =
∫
ω
Rc(λ)S(λ)L2(λ)dλ,

(2)

where Rc and S are assumed to be fixed (i.e. images IL1

and IL2 are taken by the same camera). The difference be-
tween the images is due to the different lightings L1 and L2.
The goal in color constancy is to compute a transformation
to make the image values of these two images as similar as
possible. It is generally accepted that a diagonal 3 × 3 ma-
trix T is sufficient to map between these images [4, 7, 12],
where the diagonal matrix T maps the rgb values of IL1

to IL2 . When the target illumination is not specified (as is
1http://www.adobe.com/support/downloads/

product.jsp?product=106&platform=Windows

often the case), the problem becomes one of mapping the
source illumination, L1, to a canonical illumination. This is
typically referred to as white-balancing where an observed
or estimated white-point (denoted as rw, gw, bw) in the im-
age IL1 maps to the rgb values (1,1,1). This means that
the diagonal entries of T are 1/rw, 1/gw, 1/bw. White-
balancing is a thoroughly studied topic and a variety of tech-
niques to estimate T exist (e.g. [2, 10, 11, 6], for an excel-
lent survey see [12]).

The raw-to-raw mapping problem can be similarly ex-
pressed as:

I1 =
∫
ω
R1c(λ)S(λ)L(λ)dλ

I2 =
∫
ω
R2c(λ)S(λ)L(λ)dλ,

(3)

where, in this case, the changing variables are the camera
response functions, R1c and R2c, i.e. images I1 and I2 are
from different cameras. Similar to color constancy, the goal
is to compute a mapping, denoted as f , such that we can
map image I1 to appear as image I2, i.e.:

I2 = f(I1). (4)

Ideally, this mapping should work for any scene and light-
ing condition. Since f does not depend on the image’s spa-
tial content, it can be considered a colorspace conversion
from I1’s raw-rgb to I2’s raw-rgb. While similar to color
constancy, the raw-to-raw mapping has to compensate for
three different color response functions versus one change
in spectral lighting. In addition, this mapping needs to be
computed in the face of camera-based metamerism. More
discussion about metamerism related to raw-to-raw map-
ping is included in supplementary material.

To estimate f , a number of corresponding raw-rgb sam-
ples between the two cameras colorspace is needed. The
most direct way to obtain this is by having both cameras
image a calibration color chart under several different illu-
minations as shown in Figure 2. The use of the chart estab-
lishes corresponding raw-rgb between cameras (i.e. patches
are unique colors); the multiple illuminations help to span
the camera’s gamut and serve to reveal how scene colors
S shift due to illumination change L. The question now is
how to best estimate f? We explore this in the next section
examining five mapping approaches applied in both a global
manner for any type of scene and illumination (denoted as
fG), as well as the more restrictive case of an illumination-
specific transformation, denoted as fL, where L is a known
illumination.

3. Evaluating mapping approaches
3.1. Mapping methods

We examine five different transformation approaches for
estimating f . These are as follows:
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Figure 2. This figure shows the raw-to-raw calibration setup. Images of color calibration charts are taken under several different lighting
conditions by the source and target cameras. Mapping between these two cameras’ raw-rgb colorspaces can be estimated using a global
mapping (all illuminations combined) or via multiple illuminant-specific mappings.

Linear transform (T3×3) This uses a simple 3×3 matrix
to perform the mapping. The values can be solved using
any standard least-squares method. Unlike color constancy,
the transform is a full matrix, not a diagonal.
Linear transform with offset (T3×4) This method extends
the 3 × 3 matrix by adding an 3 × 1 offset vector to make
an affine transform. The matrix and offsets can be solved
using a standard least-squares method.

Polynomial model (Poly) This method was proposed
in [13] and extends the linear transformation by adding
high-order terms (e.g., rg, rb, gb, r2, g2, b2). The parame-
ters can be obtained by solving a 3 × 11 matrix in a least-
squares manner.
Radial basis functions (RBF) RBF is a well known scatter
point interpolation method which is described as: f(x) =∑N

i=1 wiφ(||x− ci||), where the approximating function
f(x) is a linear combination of N radial basis functions
φ(r). Each basic function is controlled by a different cen-
ter ci estimated from a set of corresponding points given
between the source and target space and weighted by an
appropriate coefficient wi that can be computed by linear
least-squares manner. For more information see [3].

Gaussian process regression (GPR) GPR uses a
joint Gaussian distribution for estimation: f(x) ∼
N(m,K(θ, x, x′)), where m is the mean function value,
K(θ, x, x′) is the covariance matrix between all possible
pairs (x, x′) for a given set of hyperparameters θ. For more
information see [19].

3.2. Global versus illumination-specific

As mentioned in Section 2, we evaluate the different
mappings in a global and illumination-specific manner. For
the global approach, we estimate the mapping using the
five models previously described using all of the colorchart
samples under different illuminations. For the illumination-

specific method, we use only the color samples for a partic-
ular illumination.

The results of these five strategies applied as a global
mapping and illumination-specific mapping are shown in
Table 1 in columns one and two. To compute the mapping,
two Macbeth color charts (24 patches and 140 patches)
is imaged under four different lighting conditions: Fluo-
rescent (FL), Incandescent (IN), Halogen (HA), and LED
(LE). The source and target cameras shown here are for a
Canon 1D and Nikon D402. For the RBF model, we used
one more dataset (paper and paint chips described in Sec-
tion 5.1) for cross-validation to control the number of cen-
tral points to avoid overfitting. The residual errors shown in
Table 1 were computed on the color calibration charts and
are reported as root mean square error (RMSE).

3.3. Discussion

It is clear from Table 1 that among all the approaches
for modeling f , the illumination-specific transformations
give the lowest errors. Not surprisingly, the more complex
transformation methods such as RBF and GPR provide bet-
ter fitting in both the global and illumination-specific ap-
proaches. However, this finding comes at a cost in terms
of evaluation time, where RBF and GPR can take several
minutes to convert an image, while the other transforma-
tions can be done in a matter of seconds.

The obvious downside of the illumination-specific strat-
egy is the need to store several mappings for the most com-
mon illuminations. This also requires that when an image is
converted its illumination must be known to select the cor-
rect transformation. This makes illumination-specific map-
pings less attractive for practical applications for raw-to-raw
mapping.

2Results for other camera pairs show a similar trend and are reported in
the supplemental materials.
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Light
Global (in 10−2) Illumination-specific (in 10−2) Our method (in 10−2)

T3×3 T3×4 Poly RBF GPR T3×3 T3×4 Poly RBF GPR T3×3 T3×4 Poly RBF GPR
FL 1.65 1.61 1.56 1.57 1.53 1.29 1.25 1.118 1.18 1.24 1.35 1.28 1.26 1.27 1.28
IN 1.23 1.05 0.84 0.84 0.67 0.95 0.68 0.62 0.62 0.63 0.99 0.75 0.73 0.73 0.66
HA 0.77 0.64 0.38 0.38 0.35 0.52 0.32 0.29 0.29 0.30 0.55 0.37 0.37 0.37 0.32
LE 0.63 0.66 0.36 0.37 0.47 0.32 0.27 0.26 0.26 0.27 0.36 0.33 0.33 0.33 0.32

AVG 1.07 0.99 0.79 0.79 0.76 0.77 0.63 0.59 0.59 0.61 0.81 0.68 0.67 0.68 0.65

Table 1. The table shows the comparisons of error between all linear and non-linear models in three categories: global, specific and white-
balancing. We used color calibration charts taken under four lighting conditions: Fluorescent (FL), Incandescent (IN), Halogen (HA), and
LED (LE). AVG means the average error for all the lightings.

Canon1D Nikon D40 Sony α57
W C W C W C

Canon 1D - - 3.76 5.37 4.71 5.61
Nikon D40 3.65 5.27 - - 5.34 6.31
Sony α57 4.95 5.83 5.46 6.60 - -

Table 2. The table shows the comparisons of percentage error (in
%) between white points (W) and color points (C) by the global
transform.

It is important to note that the fitting errors from the
global methods were not distributed equally for all color
values. For example, raw-rgb values that represent illumi-
nation (i.e. the gray/white patches on the colorchart) report
a lower error than the average error of the other colors. Ta-
ble 2 shows these errors using the T3 × 4 transformation in
terms of percentage error to remove the effect of the mag-
nitude of the raw-rgb values. This finding led us to develop
an alternative to the illumination-specific method that pro-
vided similar results but in a much more compact manner.
This approach is described in the following section.

4. Proposed illumination-independent method
Figure 3-(A) overviews our proposed calibration pro-

cedure, and Figure 3-(B) describes how to perform the
raw-to-raw conversion. Both are described in detail below.

Calibration The approach starts by computing a global
transformation fG between the two cameras raw-rgb
colorspaces. Next, color values for each illumination are
transformed by a white-balance transformation which uses
the white-patches on the color chart to estimate the white
points. This results in both cameras illuminations being
mapped to a canonical illumination. Finally, a mapping,
fLc , is computed between these transformed colorspaces,
where the superscript Lc denotes the canonical illumina-
tion. This means that our method needs to compute only
two mappings, a global mapping, fG, and a canonicalized
mapping fLc .

Raw-to-raw mapping Consider an input source image
ILs taken under an unknown illuminant L. Our goal is to

transform this to another camera’s colorspace as if it was
taken of the same scene and under the same illumination,
i.e. to target image ILt . First, the white-point of ILs is
estimated, i.e. (rws, gws, bws). This can be done with any
robust white-balancing algorithm (e.g. [4, 7, 12]). Next
the source image is white-balanced using the estimated
Tws. This results in a new image, denoted as ILc

s , that
has a canonical illumination. From this, the image can be
mapped to the canonical lighting in target raw-rgb space
via ILc

t = fLc(ILc
s ).

After conversion using fLc it is still necessary to map
the target image ILc

t back to the correct input illumination.
We cannot use the estimated white-point (rws, gws, bws),
since this was estimated in the source colorspace. Instead,
we find the target white-point by using the global trans-
form, such that (rwt, gwt, bwt) = fG(rws, gws, bws). As
previously discussed, while the global transformation fG

is not ideal for all colors, it has acceptable performance on
color values associated with illuminations. Once we have
this target white point, we can obtain the desired ILt by
applying the inverse white-balance transform, T−1wt .

Transformation used Table 1 (last column) shows our pro-
posed method implemented using the five different trans-
formation methods discussed in Section 3.1. For the map-
ping models, while the non-linear mapping models perform
better, the linear offset model follows them closely. Fur-
ther, the inherent simplicity and lower dimensionality of
this model scores over the non-linear models. Thus, we
choose to implement our canonical illumination method us-
ing linear offset model (i.e. T3×4) for estimating fG and
fLc used in our method.

5. Experiments and results
We compare our method with the method presented in

[13] and the Adobe’s Digital Negative (DNG) software. The
experiments are tested on two different data sets. The first is
an image set of paint and paper samples for which explicit
point correspondences can be extracted easily (denoted as
the controlled image set). The second data set is a series of
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Figure 3. This figure shows the overview of our raw-to-raw calibration and conversion approach. (A) shows the steps of our calibration
procedure. A global mapping fG is computed using all of the color chart points. White-balancing is then applied to the color charts values
from both cameras. Next a mapping on the canonical-illumination, fLc is computed. (B) illustrates the conversion procedure (see paper
for details).

outdoor scenes (termed outdoor image set) taken by multi-
ple cameras from the same location. The global and canon-
ical illuminations mapping are computed only once as de-
scribed in Section 4 from raw-rgb samples obtained from
two Macbeth color charts imaged under six illuminations
with four lighting conditions (two types of fluorescent, two
types of incandescent, halogen, and LED light). Calibration
and conversion code is written in Matlab and takes less than
a second for raw-to-raw conversion. Matlab source code
and data sets are available on the project webpage 3.

Adobe outlines their procedure for DNG conversion
in [1] and recommends estimating a T3×3 mapping for only
two different lighting conditions, L1 and L2. It is recom-
mended that these lighting conditions be “far apart” from
one another in terms of color temperature. From this, two
transformations can be computed, TL1 and TL2 . Given
a raw input image the illumination is obtained from the
raw file’s metadata (i.e. the white-balance setting), and
the raw-to-raw transformation, f , is estimated as: f =
w1T

L1 + w2T
L2 where the weights w1 and w2 are based

on the similarity of the input image’s illuminant, L to the
two illuminates L1 and L2, s.t. w1 + w2 = 1. Details to
how these weights are computed is not explicitly given.

The Adobe SDK does not explicitly map between two
different cameras, but instead maps images to the DNG for-
mat which acts as canonical color space. Note that this is
different from our proposed canonical illumination space.
To make sure that the reported errors are in the same scale
space, we use DNG space to compute a direct camera to
camera mapping. This is done by converting the two im-

3www.comp.nus.edu.sg/˜whitebal/raw_2_raw/index.
html

ages from the two cameras, denoted as Is and It, to their
DNG representation IDs and IDt using the DNG software.
We can now compute a 3× 3 linear transformation TD

s that
maps Is to IDs . The transform TD

t can be computed sim-
ilarly for It. Since IDs and IDt are in canonical space, we
have It = (TD

t )−1 × TD
s × Is. We found that the residual

errors in computing these TD
s and TD

t were very low, indi-
cating that this was a reasonable strategy for comparison.

While the images in our data set have been taken with the
same exposure settings, small differences attributed to lens
optics and sensor gain require the use of a scale factor k to
adjust the two raw images to have similar exposure before
evaluating the residual error. Here k =

∑
x I

l
t,x/

∑
x Î

l
t,x,

where x is the pixel location, It is the ground-truth target
image, and Ît is a converted raw-image.

5.1. Controlled image set

This data set consists of images of colored paint chips
and paper samples. Examples are shown in Figure 4.
These are imaged under indoor fluorescent, tungsten and
outdoor daylight illuminations with the following cameras:
Canon 1D Mark III, Canon EOS 600D, Nikon D40, Nikon
D5200, Olympus E-PL6, Panasonic DMC-GX1X, Samsung
NX2000, and Sony α57. Images are aligned using a homog-
raphy and further cropped to ensure that only the colors are
being compared. A jet map is used to show the pixel er-
ror between the transformed raw-rgb images and the ground
truth raw-rgb images.

We also show the following pixel error statistics: mean
(M) error, 25% quartile (Q1) error, 50% quartile (Q2) error
(i.e. median error) and 75% quartile (Q3) error. Examples
of raw-to-raw conversions are shown in Figures 5 and 6.
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Figure 4. Example images of the controlled image set of paint
chips and paper samples. The cyan rectangles are regions used
for extracting the raw values.

The error map as well as the mean and quartile errors show
that the proposed method results in lower conversion errors.
See supplemental material for additional results.

5.2. Outdoor image set

Figure 7 shows examples from the outdoor image data
set. Care is taken to align and crop the images to be simi-
lar, however, there are still some slight misalignment. This
makes it hard to evaluate the error by using point wise sub-
traction. Instead, we examine how well aligned the raw-rgb
color histograms of the ground truth and converted image
are. The symmetric Kullback-Leibler (KL) divergence [16]
is used to measure the histogram distance:

D = DKL(Ht||Ĥt) +DKL(Ĥt||Ht)

=
∑

i log(
Ht(i)

Ĥt(i)
)Ht(i) +

∑
i log(

Ĥt(i)
Ht(i)

)Ĥt(i)
(5)

where Ht is the histogram of the target image It, Ĥt is the
histogram of the transformed image Ît, and i is the index of
each histogram bins up to 212 (equal to the maximal level
of the raw image). This is computed per color channel with
the mean reported as the KL divergence distance.

The comparison between Adobe DNG, Hong et al. [13],
and our approach is given in Table 3 and Table 4. We tested
on six different cameras: Canon 1D Mark III, Nikon D40,
Sony α57, Olympus E-PL6, Panasonic GX1, and Samsung
NX2000. For each pair of cameras, eight pairs of raw im-
ages are examined and the mean values of the KL diver-
gence distances are shown in Table 3 and Table 4. Our pro-
posed method performs better than the other two methods.
Additional results provided in the supplementary material.

6. Example application
Here we show an application of the raw-to-raw conver-

sion using our approach to mosaic images captured from
different cameras. Three different cameras Nikon D40,
Sony α57, and Canon 1D are used. All three images are
taken under the same exposure settings. Mosaicing with-
out raw-to-raw conversion is shown in the top row of Fig-
ure 8. The Canon and Nikon images are converted to be
in the Sony rgb-raw colorspace based on our pre-computed

Figure 7. The figure shows example images of outdoor image set.

Before 

After 

Nikon D40 Sony 𝛼57 Canon 1D 

Figure 8. This figure shows an example of image mosaicing appli-
cation. Three different cameras Nikon D40, Sony α57, and Canon
1D are used. This figure shows the comparison before and after
conversion. All the images are converted to the raw-rgb space of
the Sony α57. These mosaics have been adjusted by a gamma for
better visualization.

transformation using the color charts described in Section 4
(no other blending or color conversion is applied). Figure 8
shows that after raw-to-raw conversion the mosaic has bet-
ter color continuity and lesser apparent seams.

7. Concluding remarks

This paper has examined the problem of converting be-
tween camera’s raw-rgb colorspaces. We examined five dif-
ferent mapping models applied in a global and illumination-
specific manner. Our results show that illumination-specific
approach gives the best results, but at the disadvantage of
maintaining multiple transformations and categorizing in-
put images to scene illumination. To overcome this prob-
lem, we proposed an illumination-independent method that
uses white-balancing to canonicalize the illumination. This
method allows us to perform the raw-to-raw mapping using
only two linear transformations. We described the calibra-
tion and our mapping procedure and showed its effective-
ness on a range of inputs and under different illuminations.
We have also prepared a data set useful in further explo-
ration of the raw-to-raw conversion problem.
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Figure 5. Comparison between all approaches. This shows the results on a Canon 1D and Nikon D40. Two lighting conditions are shown
with the camera setting given to the DNG software. Results show the mean raw pixel errors (normalized) and the errors at the 25%,
50% (median) and 75% quartiles (Q1, Q2, Q3).
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Mean: 0.0065,    Q1: 0.0037 
Q2:       0.0057,    Q3: 0.0084 

Mean: 0.0581,    Q1: 0.0359 
Q2:       0.0571,    Q3: 0.0828 

Mean: 0.0169,    Q1: 0.0115 
Q2:       0.0162,    Q3: 0.0216 

Mean: 0.0135,    Q1: 0.0072 
Q2:       0.0117,    Q3: 0.0184 

Mean: 0.0086,    Q1: 0.0048 
Q2:       0.0075,    Q3: 0.0112 
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Figure 6. Comparison between all approaches. This shows the results on a Nikon D40 and a Sony α57. Two lighting conditions are
shown with the camera setting given to the DNG software. Results show the mean raw pixel errors (normalized) and the errors at the 25%,
50% (median) and 75% quartiles (Q1, Q2, Q3).
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Canon1D Nikon D40 Sony α57
Before Adobe Hong Our Before Adobe Hong Our Before Adobe Hong Our

Canon 1D - - - - 0.8742 0.2251 0.0906 0.0543 0.4415 0.2793 0.1471 0.1451
Nikon D40 0.8742 0.1912 0.1091 0.0599 - - - - 0.6901 0.1870 0.1983 0.1623
Sony α57 0.4415 0.1368 0.0527 0.0368 0.6901 0.0753 0.0802 0.0545 - - - -

Table 3. The table shows the comparisons of histogram distance computed by the equation 5 between all the approaches from three cameras:
Canon 1D, Nikon D40, and Sony α57.

Olympus E-PL6 Panasonic GX1 Samsung NX2000
Before Adobe Hong Our Before Adobe Hong Our Before Adobe Hong Our

Olympus - - - - 0.9450 0.1787 0.0750 0.0354 0.6661 0.2584 0.2630 0.0373
Panasonic 0.9450 0.4529 0.2757 0.0162 - - - - 0.3212 0.0951 0.2866 0.0475
Samsung 0.6661 0.2278 0.1995 0.0236 0.3212 0.0667 0.0722 0.0583 - - - -

Table 4. The table shows the comparisons of histogram distance computed by the equation 5 between all the approaches from three cameras:
Olympus E-PL6, Panasonic GX1, and Samsung NX2000.
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